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The problem of small-aspect-ratio thermohaline convection is discussed in conditions 
appropriate to the salt-finger regime. Two-scale methods are employed to produce 
nonlinear coupled evolution equations for an arbitrary number of interacting roll 
solutions. These are solved in simple cases and it is shown that roll-type planforms 
are preferred over square cells throughout the range of validity of the analysis. The 
methods can be generalized to other double-diffusive convection problems. 

1. Introduction 
A layer with a stable temperature gradient and an unstable salt gradient, that is 

stably stratified in density, is known to be unstable to a double-diffusive instability, 
called salt fingering (Stern 1960). For a full list of references see the recent review 
of Turner (1985). It has long been known that the aspect ratio of the convection is 
small (the cells are tall and thin) and this can be understood both physically (since 
is allows the system to act as an efficient heat exchanger) and by reference to the 
governing equations, where the most rapidly growing mode turns out to have a 
well-defined small horizontal scale (see, e.g. Holyer 1981 and $2). Experimental 
observation of the salt-finger planform (Shirtcliffe & Turner 1970) shows that the cells 
take the form of irregular squares (rather than two-dimensional ‘sheets ’), with each 
upward-moving region surrounded by four downward-moving ones. Theoretical 
justification for such a structure is notably absent from the literature. Any researcher 
‘knows ’) when asked, that square cells act as more efficient heat exchangers than do 
sheets, but all theories of the finger regime depend on a ‘mean-field’ approach (see 
for example the theory given on p. 282 of Turner 1973), where the equations involve 
horizontal derivatives only as the horizontal Laplacian VZ, = (a2/ax2)  + (a2/ay2), so 
that all horizontal dependences f(x, y) are equivalent provided VZ, f = -uy for any 
fixed u. Any attempt to understand the planform must involve getting away from 
mean-field theories and considering the nonlinear terms that actually determine the 
planform. The only attempt to address the problem directly was made by Straus 
(1972) who calculated numerically two-dimensional finite-amplitude solutions to our 
equations (2.1)-(2.4) and then investigated their stability to three-dimensional 
disturbances. He found that the two-dimensional solutions were always stable in the 
finger regime. However his analysis does not completely resolve the problem as he 
restricted his work to the limits 7 = K S / K T + O ,  u = v / K ~ +  co, where K ~ ,  K ~ ,  v are 
the diffusiviOies of salt and heat, and kinematic viscosity respectively. Though for 
water 7 is approximately & its Prandtl number u is about 7 which is not very large, 
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besides which salt fingers can be found in systems where r is not large and 7 is not 
small. Also, since the stability of three-dimensional solutions was not investigated, 
the possibility of a bistable solution cannot be ruled out. For these reasons i t  seemed 
worthwhile to investigate less extreme parameter ratios, using a two-scale approach 
that allows a direct determination of the stability of both two- and three-dimensional 
planforms. The expansion scheme leads to nonlinear evolution equations for the 
vertical structure of the convection: the effect of the horizontal dependence is 
‘integrated out ’. This works because the nonlinear terms in the equation vanish 
indentically for infinitely long ‘cells’. The approach is almost identical to that used 
by Normand (1984) to discuss BBnard convection in tall containers. She did not 
address the planform selection problem, and indeed our leading-order equations, 
while they rule out convection with hexagonal planforms, or any other form in which 
resonant triad interactions are present, are degenerate as between squares and sheets. 
Carrying the analysis to higher order does eventually lead to an equation describing 
planform selection. Unfortunately it shows once again that sheets are the preferred 
form of motion in parameter ranges where the analysis is valid. While this is 
consistent with the conclusions of Straus (1972) and Swift (1984) who showed that 
thermohaline convection takes the form of sheets at  onset (when the aspect ratio is 
of order unity), it clearly does not describe correctly the parameter range appropriate 
to laboratory salt fingers, which has higher Rayleigh and PBclet numbers than the 
analysis can handle. Presumably the observed square-cell structure is the result of 
an instability of ‘croas-roll’ type that only sets in when there are relatively thin 
boundary layers at the extremities of the convection cells. Although the results are 
thus of rather a negative kind, they do point the way to the appropriate (and very 
difficult) problem to be tackled if all the relevant physics is to be included. They also 
show that, as for convection with large aspect ratio (Chapman & Proctor 1980) it is 
possible to go beyond the usual weakly nonlinear stability theory and derive results 
that are valid over much wider parameter ranges. 

The plan of the paper is as follows: in $2 we discuss the linearized stability theory, 
while in $3 we give the nonlinear analysis which leads to the determination of the 
planform. In  a Conclusion we discuss the shortcomings of the theory, analyse the 
effect of different boundary conditions and indicate possible generalizations. 

2. Equations and linearized stability problem 
2.1. Dimensionless equations 

For our model we take a fluid layer of depth d with horizontal stress-free boundaries 
at  z = 0 , d .  A t  z = 0 the temperature and salinity are To, Zo while at z = d they are 
To + AT, Co + A8 respectively. Making the usual non-dimensionalization, the 
dimensionless equations describing the convection are 

I [” + u Vu] = - V p  - R, 02 + R, S2 + V2u, 
at 
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where, if v is viscosity, K T  the thermal diffusivity and K~ salt diffusivity, the velocity 
u is scaled with K T / d ,  time t with d e / K T  and pressure with ( v K T / d e ) .  The temperature 
perturbation 8 and salt perturbation S are defined by 

and the dimensionless parameters are 
V 

g=- 
K T  

where g is the gravitational acceleration and -a", j are respectively the coefficients 
of density variation with respect to temperature and salinity. In  the salt finger regime 
both R ,  and Rs are positive. For salt fingers r < 1. The boundary conditions at 
z = 0 , l  (in dimensionless units) are, for the present, 

(2.7) 
a 
a2 

e = s = W L  = - ( U X L )  = 0. 

(We shall discuss other boundary conditions later.) 
The linearized version of these equations has been extensively studied (Baines & 

Gill 1969; Huppert & Moore 1976; Da Costa, Knobloch & Weiss 1981; Knobloch 
& Proctor 1981 ; Schmitt 1983) and we do not propose to go into details here. We 
recall only that instability always sets in as steady convection if 7 < 1, and occurs 
at 

R , = B , +  (xe + aa)s 
7 aa ' 

where 8 a f(x, y) sin xz,  V k  f = (ay/axa) + (aaf/aye) = -ay. Thus near marginal 
stability the growing modes all have values of a close to x / d 2  (giving a minimum 
of RT+Yx4 for the right-hand side of (2.8)). However, if the convection is highly 
supercritical it  turns out that the mode of maximum exponential growth rate has 
a %  1. 

If we linearize the equations and express the equation of motion in terms of w I u.2 
alone by eliminating the pressure, then if the exponential growth rate is h we have 

he = w+vae, 
AS = w + rVeS, 

and if 8 a f(x, y) sinxz as before, we get 

(2.9a) 

(2.9b) 

( 2 . 9 ~ )  

( 2 . 1 0 ~ )  
A 
- (A' +aa) w = - RT a28+ R, a8S- (xe +a2)2w, 
U 

(2.10 b )  

(2.10c) 
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Then we can find a cubic equation for A, whose asymptotic behaviour for small 7 ,  

or large R, can be calculated. As an example consider the case 

7 = O ( l ) ,  R, = O(R,) % 1. 

On the assumption that a % 1, the growth rate A satisfies the equation 

(:+a2) @+a2) ( A + T a 2 )  = -RT(A+~a2)+Rs(A+a2) ,  (2.11) 

and if A = I l fTX,  a = d T Z ,  y = Rs/RT then 

(a+&.) ( K + & 2 )  ( l i + 7 & 2 )  = -(li+7Z2)+ y(li+&2), (2.12) 

and it may be verified that the maximum of occurs when a“ = 0(1), if y is not too 
large. 

Other limits can be constructed (see for example Stern 1960), but they all have 
the same feature: that convection can be expected to occur as narrow cells. Indeed 
observations of salt fingers (e.g. Shirtcliffe & Turner 1970) indicate that ‘finger’ 
interfaces consist of thin fluid columns, on a scale quite close to that given by the 
maximum growth mode. 

However, these models take no account of the finite vertical extent of the layer, 
since all vertical derivatives are neglected. If there is no vertical dependence, the 
solutions given above actually solve the full nonlinear equations (2.1)-(2.4) since the 
nonlinear terms vanish identically. For a finite layer the nonlinear terms will be 
important, if only in relatively thin boundary layers a t  the extremities. Furthermore, 
the z-independent models have nothing to say about the planform of the motion since 
any function f(z, y) satisfying the membrane equation Vsf = --sfis equally possible. 
The observed planform of salt fingers appears to approximate a ‘square-cell’ 
tessellation, with rising-fluid regions surrounded by four sinking regions (see figure 
8.18 of Turner 1973). This selection must be due to nonlinear interactions between 
different modes satisfying the same membrane equation. 

The analysis that follows exploits the disparity of horizontal and vertical lengthscales 
to include the nonlinear interaction terms. The methods used are similar to those of 
Normand (1984) who considers BBnard convection in tall containers (but does not 
address the planform selection problem) and Soward (1974) who considers convection 
in a rapidly rotating system. The details of the latter calculation are quite different, 
however, due to the different nature of the physical constraints. The following section 
consists of the development of an expansion procedure with (essentially) the aspect 
ratio of the cells as the small parameter. Evolution equations are found for the 
vertical structure of the convection and although the planform selection problem 
remains degenerate at leading order it can be resolved by proceeding further with 
the expansion. 

3 .  I .  The expansion scheme 
For the nonlinear calculations it is convenient to adopt the horizontal (rather than 
vertical) scale as unit of length. In fact, instead of d, we use 

so that in this scaling RT is identically unity. We suppose that in the new scaling 
R, = O(1) and that T < 1 but T is not necessarily very small. Then equations 
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(2.1)-(2.4) still hold but with RT = 1. We now suppose that the dimensionless layer 
depth is 2, where 

I d  d - = e-1 
1 % 1, (3.2) 

and make the scalings 

(where S = d, etc. and the overbar denotes horizontal average; $ = G = 0). Note 
that w is O(1) when scaled with K T / d ,  whereas in the usual perturbation theories 
w = O ( K T / d ) .  Then substituting into the equations (2.1)-(2.4) and dropping the tildes 
we obtain 

(3.4) 

ae a - a w  -+- (we) = -, 
aT 36 3% 

ac a - a2c -+- (WS) = T - ,  
aT a t  at2 (3.9) 

while P(6, T) is determined from the mean of the vertical momentum equation. We 
solve these equations by expanding all variables, including R,, in powers of s. We 
write 

w = wo+e2wl+ ... etc; R, = Rso+s2Rsl+ ..., (3.10) 

and then at leading order we obtain 

I 0 = V&Wo-80+R,oSo, 

o = wo+v&eo, 
0 = w0+TV&So; 

(3.11) 

this is of course the linear stability problem considered in $2. Equations (3.11) are 
solved bv 

1 wo = a28, = ra2S0 ; Rso = T (  1 + a4) ; 

wo = z f (n)(z, y) T) 
n 

(3.12) 

where V& f (n) = -azf(n), and the f (n) and the A(n) are otherwise arbitrary at this 
stage, apart from boundary conditions on A(n) which we discuss later. It may be noted 
that (3.12) does not yield a minimum of Rso as a function of a. This is because, in 
order to effect an expansion scheme, we are forced to choose R,  close to its value 
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on the marginal stability curve. An attempt to choose R, large enough so as to 
capture the mode of maximum growth rate leads to an intractable boundary-layer 
problem. Nonetheless, the expansion scheme used here allows us to go further from 
the marginal curve (Rs-Rso = O(m)) than do conventional methods, for which 
Rs-Rso x O ( E ~ T ~ ) ) .  The analysis of 52 and the experiments justify the consideration 
of long thin cells and our analysis makes no attempt to treat the relative stability 
of different wavenumbers a. 

If we write 8, = B(5, T), Z, = C(5, T) then these variables satisfy the equations 

( 3 . 1 3 ~ )  

(3.13 b )  

where w ( ~ )  = f(m)A(rn),  etc. Now every solution of the membrane equation for f ( m )  

can be written in the form 

f ( m )  = eia('").x la(m)lz = a 2  , am*L=O,  (3.14) 

so if a(-m) = -@), A(-m) = A(m)* (to ensure that w, is real) then clearly 

f ( m ) f ( n )  = 
m, -n 

and so (3.15) 

At higher order in e2 we obtain a sequence of inhomogeneous problems of the form 

P, = vg w, - en + R,, s,, 
Qn = Vgen+wn, 

R, = TVR S,  + w,, 

( 3 . 1 6 ~ )  

(3.16 b)  

(3.16 c) 

where P,, &,, R, can be evaluated in terms of known quantities. The Fredholm 
Alternative for these equations can be written in the form 

a2P,fu)-Qnf~)+(l+a4) R, f") =0,  (3.17) 

for everyf"). When w, has been found the horizontal velocity components and the 
pressure may be found by substitution in (3.4), 13.5). 

Thus for n = 1 we substitute into (3.4k(3.9) and obtain, after some algebra, the 
following set of equations : 

-- 

aA(') 
0 = F - + E E E r$ A(k) G(i ; j, k)] 

aT j k 

where 
u( 1 - 7 )  + (U+T) a4 

F =  > 0, ma2 
( 3 . 1 9 ~ )  

(3.19b) 

and G(i; j, k) is zero unless a(p) = au) + a(k) ,  when G = 1. That is, the function G picks 
out resonant triads among the membrane functionsfu). Equation (3.18) differs from 
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the usual set of evolution equations for instabilities with aspect ratios of order unity 
in that it contains terms quadratic in the amplitudes A(m) (cf. Normand 1984). It must 
be solved in conjunction with the mean equations (3.13) and 80 is not simply reducible 
to one of Landau4inzberg form. 

To effect a solution to (3.13), (3.18) boundary conditions on A({) ,  B and C must 
be prescribed. For the simplest case of stress-free, fixed temperature and salinity 
boundaries, we have (cf. (2.7)) 

(3.20) 
a2w 

a22 
w = 8 = S = - = = C = 0 at 2 = O , E - ~ ,  

and we see that all these conditions can be satisfied by setting 

A u ) = B = C = O ,  [ = 0 , 1 .  (3.21) 

For other types of boundary condition we cannot satisfy all the conditions (3.20) at 
leading order and boundary layers arise at [ = 0 , l .  We discuss these in the Appendix, 
but in fact they make no difference to the solution at leading order. 

3.2. Hexagons and S Q U ~ T ~ S  

We first examine a disturbance in which only three modes are present and form a 
reaonant triad. This leads to three equations of the form 

(where others are obtained by cyclic permutation of indices) which have been solved 
numerically together with (3.13) for a variety of values of Q, 7 ,  a and Rsl. In  every 
caae the solution tended to a steady state with only one of the A(% non-zero (a 'sheet ' 
solution) except when the three amplitudes were exactly equal initially. Thus it seems 
that the system acts to remove any resonant triad interactions. This result is in 
keeping with intuition in that hexagonal convection seems invariably to be associated 
with a lack of up-down symmetry in the underlying physics. 

Guided by the above considerations, we now focus on disturbances which contain 
no resonant triad interactions - and the simplest of these is the cam 

w, = A(l) COB ax + A(%) cos ay, (3.23) 

(note the slight change of notation) which corresponds to a 'square cell' (cf. Jenkins 
& Proctor 1984) if A(') = A(*). Thus the choice (3.23) will enable us to decide whether 
rolls or squares are preferred in this parameter range. The equations now reduce to 

FA$) = 3a2A@ +pA(')-A(')[(l +a4) Cs-BE] (3.24a) 

FA$!) = 3tcAR +PA(') -A'2'[( 1 +a4) Cs- BE], (3.24 b)  

(3.24 c) 

(3.24 d )  

where ,LA = RS1/r .  To investigate this set of equations it is convenient to write 

A(') + iA(2) = p([ ,  T) eWL T) (3.25) 
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(3.26b) 

( 3 . 2 6 ~ )  

(3.26d) 

It is thus clear that the system is totally degenerate at this order: for any 'phase' 
$ constant in 6 and T, there is a steady solution of the same ' amplitude ' p and since 
the value of $ itself occurs nowhere in the equations, there is no way to determine 
a preferred value of it. The 'diffusion-equation'-like form of (3.263) suggests that 
$ will in fact tend to a constant value everywhere as T+ 00, and although there is 
no proof available, numerical simulations of (3.26) show that this is what occurs. In 
order to resolve the degeneracy, we need to proceed to higher order in the expansion 
scheme, but before doing this it is instructive to examine the steady solution to (3.26) 
so as to determine the limits of the scheme. 

3.3. X t d y  solutions 
If we set a/aT = 0 in (3.26c, d )  these equations may be integrated to give 

(3.27) 

Thus both terms in the square brackets in ( 3 . 2 6 ~ )  have the same form, and if factors 
of order unity are removed by appropriate scaling of p and the amplitude of p we 
arrive at the canonical equation 

0 = P6C+IuP--(P2--(P2))P. (3.28) 

This equation, with the boundary conditions p(0)  = p( 1) = 0, can actually be solved 
for any ,u > n2 in terms of Jacobian elliptic functions. (For ,u < n2 there is no steady 
convection as we are then below the marginal stability boundary.) In fact, if E(m)  
and K(m)  are the usual elliptic integrals of the first and second kinds respectively, 
then the solution is given parametrically by the relations 

N = c l+ (P2) ,  (3 .294  

N 
l + m  

(3.29 b )  

(3.29 c )  

(3.29 d )  

(cf. Knobloch & Proctor 1981). When p & 1, the parameter m is very close to 1 and 
sn (z I m) is then approximately constant away from the boundaries. We can show 
using boundary-layer techniques that for large p, p x p /21 /2  in the interior. Thus 
the amplitude of the convection increases like (R,- R,,), and when p is large the 
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associated boundary layer thickness is O(p-').  Hence the separation of scales on 
which the derivation of (3.24) was based can be expected to hold until p % e-l, or 
Rs-Rso = O(s). Even this is somewhat too small accurately to reflect the situation 
in most experiments. An attempt to investigate the stability problem in the latter 
parameter range leads to a difficult nonlinear boundary-layer analysis near = 0 , l  
and this has not yet been solved. 

3.4. Resolution of the degeneracy 
In  order to distinguish between rolls and squares, we need to proceed to the next order 
in the expansion scheme. Bearing in mind the number of terms contained in P,, Q2, 
R, this represents a formidable twk. However, we can save time by noting that of 
the higher-order corrections to (3.24) we are only interested in those terms that give 
information about the absolute phase. In fact all the wl, 8,, S, terms are of five types, 
namely those proportional to cos ax, cos ay, cos 2ax, cos 2ay, cos ax cos ay .  The first 
two give no information about the phase and the third and fourth turn out to be 
identically zero since the temperature, salinity and vertical velocity fields all turn 
out to be proportional to each other at leading order in the steady state. Lengthy 
calculation yields, writing w1 = C,  cos rn cos ay(A(1)A(2))E+ (other terms), etc., 

(3.30a) 

C e -  - -L[2a47(2+k)+(1-7) 6 a 8 7  ( i+a2)  1 , (3.30 b )  

C ,  = -1 6a87 Fa4 (z +k) + ('- 1) (1 +4a4)], ( 3 . 3 0 ~ )  

and it can be seen that all these are negative when 7 < 1. Having (formally) solved 
for wl etc. we may now write down the solvability condition (3.17) at O(e4). However, 
it is better to combine the O(s2) and O(e4) results to yield the mixed-order system 
(recall equation (3.25)) 

F A ~ ) - 3 a 2 A ~ - p A ( ' ) + A ( ' ) [ ( 1  +a4) CE-BE] 

a2 c,-Pe++(i +a4) c ~ ]  

a* 
C,-$e++(i +a 

= €,[cubic terms proportional to (A(')@ -A(2)A&)] 

+ €,[terms proportional to cos #], (3.31) 

and similarly for A(,), 

1 
B,-B +- (A(1)'+A(2)a)E = €*[terms independent of $1 

C,-TC f- (A(l)'+A(Z)')E = €,[terms independent of $1. 

Now at leading order in E ,  as we have seen, A(,) +p cos #, A(,) +p sin $ where # is 
an unknown constant. When the higher-order terms are included it is clear that $ 

2a2 

E6 27a2 
1 
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will itself evolve on the slow timescale T* = e2T. For satisfaction of the equations at 
O(so) A(’) and A(2) must be of the form 

(3.32) 

where D is real andp(5) may be taken to satisfy the steady amplitude equation (3.28). 
Substituting the ansatz (3.32) into (3.31) then leads to the cancellation of all terms 
at  leading order. At order e2 we obtain 

W A(1) + iA(2) = pei(’$(T*)++e(5, T’)) + e2Dpei8T* + 0 ( ~ 2 ) ,  

tlW F ,,,+i(cos$ sin2$+i sin$ cos2$) [ ~ p ( p ~ ) ~ ~ + ~ p ~ ( p ~ ) ~ ]  

where P = aFC, + (a2/2a) Cw-!jCo +{( 1 + a4) C,, Q = P+ aFC,, and the last term on 
the left-hand side derives from the ‘out of phase’ part of ( -3a2Wff) (cf. (3.18), etc.). 
Multiplying (3.33) by e-i@, taking the imaginary part and ignoring all small terms 
we obtain 

a$ 3a2 
~ p ~ + : ( s i n $  cos~$-cos$ sin3$) ( ~ p ( p z ) ~ ~ + ~ p ~ ( p ~ ) ~ ) - -  (p242E)5 = 0. (3.34) 

Now this equation still contains the unknown function q52. However, for solutions that 
are not singular at the boundaries, we must have 

P 

(3.35) 

since p vanishes at each boundary. Applying this to (3.34) we arrive at the required 
equation for $, namely 

( Io’ p2 d5) F $+{(sin $ cos3$ - cos $ sin3 $) p2( p2)55 d5 + Q pp& pa)( d[ = 0. S l  
(3.36) 

Since (3.37 a )  

(3.37 b )  

-+@ d$ sin44 = 0, (3.38) 
dT* 

we finally obtain 

where (3.39) 

It may in fact be verified that G > 0 when 7 < 1 for all a and a. The fixed points 
of (3.38) are $ = *n, n = 1,2,  ... and i t  is easy to see that the values an, in, etc. 
(corresponding to square cells) are unstable, while 0, in etc. (sheet solutions) are 
stable. This conclusion, which is independent of the amplitude of the solution, agrees 
with the results of Straus (1972) and Swift (1984) for aspect ratios of order unity and 
weakly nonlinear convection. 
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4. Discussion 
We have shown that thermohaline convection at small aspect ratio shows a 

preference for roll rather than square-cell tessellation for all values of the parameters 
such that thin salinity or temperature boundary layers do not dominate the 
dynamics. This result conflicts, of course, with observations of fingering interfaces 
that show the presence of more or less square cells. Two difficulties of the model might 
explain the discrepancy. First, the rather simple boundary conditions we have 
adopted may not be appropriate for an internal layer of fluid surrounded by well- 
mixed material. It may well be, for example, that the appropriate thermal boundary 
condition is one of fixed flux rather than fixed temperature. We have investigated 
the effect of changing the boundary conditions, and an outline of the results is given 
in the Appendix. A thin boundary layer of relative thickness 6 forms at 6 = 0 , l  and 
this leads to O(B)  changes in the coefficients P, &. Since the crucial quantity G is 
bounded away from zero these small changes do not affect the above results. One 
might also wonder at the failure to predict the preferred wavenumber in the range 
considered. Unfortunately, any theory that has the (salt) PBclet number of order 
unity does not lend itself to the type of analysis pursued here, since boundary layers 
will develop as described in $3. A boundary-layer theory similar to that described 
by Howard (1965) may be undertaken if only the mean-field interactions are retained. 
This appears (though the details have not been fully worked out) to give a value for 
the ‘preferred’ wavenumber (i.e. that corresponding to the greatest heat transport) 
of the same order as that of the mode of maximum growth rate on linearized theory. 
However, any attempt to distinguish between different planforms by adding the 
‘out-of-phase’ terms leads immediately to an intractable problem. There seems to 
be little doubt t h t  there is a bifurcation of the ‘cross-roll’ type that occurs in the 
boundary-layer regime and leads to an (approximately) square-cell structure. (Some 
progress towards understanding the boundary layers has been made by Howard & 
Veronis (1984) but they have not as yet considered three-dimensional motion.) 

Although the work presented here does not explain the experiments (which occur 
in a rather different parameter range) it does show that when convection occurs at 
small aspect ratio it is possible to extend the usual weakly nonlinear analysis (leading 
to ‘normal forms’ in the guise of low-order systems of o.d.e.’s) and construct systems 
of p.d.e.’s that allow the planform-selection question to be addressed in a larger 
parameter range than that possible with weakly nonlinear theories. Another type of 
double-diffusive convection exhibiting motion at small aspect ratio is magnetocon- 
vection (see e.g. Proctor & Weiss 1982), and analogous methods may be used to find 
the planform in that case. Preliminary results are given in Proctor (1986). 

Appendix. The effect of varying the boundary conditions 
The analysis of $3 was simple because the boundary conditions on w, 8 and S were 

all the same, and so could be satisfied by the single function A. If the temperature 
and salinity boundary conditions are changed this is no longer the case, and boundary 
layers appear at E = 0, l .  Since all the possible conditions lead to equivalent ref3Ult5, 
let us choose the case 

9 FLY 168 
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The leading-order solution (3.12) has wo = a2B, = 7a2So, which is incompatible with 
the above relations. If we now define a boundary-layer coordinate z = s-’f (near 
6 = 0) and denote boundary-layer variables by g, etc. we set 

and obtain the equation 
tz = €tzl, B = E B ; ,  9 = €ill, (A 2) 

o = a201 - T (  1 + 014) a2Rl + (a; - a 2 ) 2  tz,, (A 3 4  

o = tz1+(a;-a2)Ol, (A 3b) 

o = tz,+7(a;-a2)Rl, (A 3 4  

which are to be solved subject to the conditions at z = 0; 

tz,, &,, 9, all tend to constant values as z+ 00. 

The general solution of (A 3) satisfying the conditions as z -+ co is 

tz, = C+ (a2-m2) De-mz+ (a2-m*a) D*e-m*z (A 5a) 

01 B --, 
l -  7 

where C ,  D, D* are constants, and m and m* are the roots with positive real parts 

m4 - 3a2m2 + 3a4 = 0. of the quartic equation 

The conditions at z = 0 then imply that 
(A 6) 

C+(a2-m2)D+(a2-m*2)D* = 0, (A 7a) 

(A 7b) m2(a2-ma) D+m*2(a2-m*2) D* = 0, 

mD+m*D*=%l a2 . 

Solving these equations yields the value of C as 

C = !% a (3 + 22/3)-4. (A 8) 

Thus the effect of the boundary layer is to replace the boundary condition wo = 0 
on the velocity by the modification 

with an analogous condition at 6 = 1. Different boundary conditions on S and 0 will 
give relations like (A 9) but with different numerical factors. 

The small modification to the boundary conditions implied by (A 9) will clearly 
make changes of O(E) in the leading-order dynamics. In particular the quantities P 
and Q will need to be adjusted by amounts of order s. Since these quantities differ 
by an amount of order unity, the sign of the quantity G will not be affected. 

This work was begun during the 1984 Woods Hole Geophysical Fluid Dynamics 
Summer School. We are grateful to the Director, Professor W. V. R. Malkus, for his 
hospitality . 
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